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Abstract. We discuss the Bose–Einstein interference effect in multi-particle production. After a short
review of various methods of implementation of this effect into Monte Carlo generators the weight method
is presented in more detail and used to analyze the data for hadronic Z0 decays. In particular, we consider
the possibility of deducing the two-particle weight factor from the experimental data.

1 Introduction

In the last years many papers have been devoted to ex-
perimental and theoretical studies of Bose–Einstein inter-
ference effects [1] in multi-particle production. It has been
argued that these studies may allow for the reconstruction
of the space-time development of the interactions. In par-
ticular, different possibilities of implementing interference
effects into Monte Carlo generators used for high energy
hadroproduction processes were discussed. In this note we
add some points to this discussion.

We present in detail some aspects of the weight method
of implementing the BE effect in the MC generators. In
particular, we try to establish to what extent one may
reconstruct the two-particle weight function (related to
the Wigner function) from the data on the BE effect. For
this purpose we use the data on multi-particle production
with the highest statistics available, the hadronic decays
of Z0’s produced in e+e− collisions.

A short summary of various methods of implementing
interference effects into Monte Carlo generators is pre-
sented in the next section. In the Sect. 3 we discuss the
data from different LEP experiments on two-particle cor-
relations from Z0 hadronic decays which were used for an-
alyzing the Bose–Einstein effect. Sect. 4 is devoted to the
analysis of data in terms of the weight model. In particu-
lar, various choices of two-particle weight factors used in
this method are compared. The last section contains some
conclusions and an outlook for further investigations.

2 Implementation methods

The standard discussion of the BE effect in multi-particle
production [2] starts from the classical space-time source
emitting identical bosons with known momenta. Thus,
the most natural procedure is to treat the original Monte
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Carlo generator as the model for the source and to sym-
metrize the final state wave function [3]. This may be done
in a more proper way using the formalism of Wigner func-
tions [4]. In any case, however, the Monte Carlo generator
should yield both the momenta of the produced parti-
cles and the space-time coordinates of their creation (or
last interaction) points. Even if we avoid troubles with
the uncertainty principle by using the Wigner function
approach, such a generator seems reliable only for heavy
ion collisions. It has been constructed also for the e+e−
collisions [5], but localizing the hadron creation point in
the parton-based Monte Carlo program for lepton and/or
hadron collisions is a rather arbitrary procedure, and it is
hard to say what one really tests comparing such a model
with the data.

It seems to be the best procedure to take into account
the interference effects before generating events. Unfor-
tunately, this was done until now only for the JETSET
generator for a single Lund string [6–9], and a generaliza-
tion for multi-string processes is not obvious. No similar
modifications were yet proposed for other generators.

The most popular approach, applied since years to the
description of BE effect in various processes, is to shift
the final state momenta of the events generated by the
PYTHIA/JETSET generators [10,11]. The prescription
for a shift is such as to reproduce the experimentallly ob-
served enhancement in the ratio

c2(Q) = F

∫
d3p1d3p2ρ2(p1, p2)δ(Q − √−(p1 − p2)2)∫

d3p1d3p2ρ1(p1)ρ1(p2)δ(Q − √−(p1 − p2)2)
,

(1)
where F is a normalization factor:

F = 〈n〉2/〈n(n − 1)〉.
The function c2(Q) depends on a single invariant vari-
able Q. The value of this function is close to one for the
default JETSET/PYTHIA generator. One often parame-
terizes this ratio by

c2(Q) = 1 + λ exp(−R2Q2), (2)
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where R and λ are parameters interpreted as the source
radius and the “incoherence strength”, respectively.

After performing the shifts, all the CM 3-momenta of
the final state particles are rescaled to restore the original
energy. In more recent versions of the procedure [12] “local
rescaling” is used instead of the global one. In any case,
each event is modified and the resulting generated sample
now exhibits “BE enhancement”: the ratio (1) is no longer
close to one, and it may be parameterized as in (2).

There is no theoretical justification for this procedure,
so it should be regarded as an imitation rather than im-
plementation of the BE effect. Its success or failure in de-
scribing data is the only relevant feature. Unfortunately,
whereas the method is very useful for the description of
two-particle inclusive spectra, it fails to reproduce (with
the same fit parameters R and λ) the three-particle spec-
tra [13] and the semi-inclusive data [14]. This could cer-
tainly be cured, e.g., by modifying the shifting proce-
dure and fitting the parameters separately for each semi-
inclusive sample of data. However, the fitted values of pa-
rameters needed in the input factor (2) used to calculate
shifts are quite different from the values one would get fit-
ting the resulting ratio (1) to the same form [15]. This was
shown recently in a much more detailed study [16]. Thus,
it seems to be very difficult to learn something reliable of
the space-time structure of the source from the values of
the fit parameters in this procedure.

All this has lead to a revival of weight methods, which
have been known for quite a long time [17], but were
plagued with many practical problems. The method is
clearly justified within the formalism of the Wigner func-
tions, which allows one to represent (after some simplify-
ing assumptions) any distribution with the BE effect built
in as a product of the original distribution (without the
BE effect) and the weight factor, depending on the final
state momenta [18]. With the extra assumption of fac-
torization in momentum space, we may write the weight
factor for the final state with n identical bosons as

W (p1, . . . pn) =
∑ n∏

i=1

w2(pi, pP (i)), (3)

where the sum extends over all permutations Pn(i) of n
elements, and w2(pi, pk) is a two-particle weight factor re-
flecting the effective source size. A commonly used simple
parameterization of this factor for a Lorentz symmetric
source is

w2(p, q) = exp[(p − q)2/2Q2
0]. (4)

The only free parameter now is Q0, representing the
inverse of the effective source size. In fact, the full weight
given to each event should be a product of factors (3) cal-
culated for all kinds of bosons; in practice, pions of all
signs are counted. Only direct pions and the decay prod-
ucts of ρ, K∗ and ∆ should be taken into account, since
for other pairs a much larger R should be used, resulting
in negligible contributions.

The main problem of the weight methods is that
weights do change not only the Bose–Einstein ratio (1),

but also many other distributions. Thus, with the default
values of the free parameters (fitted to the data without
weights) we inevitably find some discrepancies with the
data after introducing weights.

We want to make clear that this cannot be taken as a
flaw of the weight method. There is no measurable world
“without the BE effect”, and it makes not much sense to
ask if this effect changes e.g. the multiplicity distributions.
If any model is compared to the data without taking the
BE effect into account, the fitted values of its free param-
eters are simply not correct. They should be refitted with
weights, and then the weights recalculated in an iterative
procedure. This, however, may be a rather tedious task.

Therefore, we use a simple rescaling method proposed
by Jadach and Zalewski [20]. Instead of refitting the free
parameters of the MC generator, we rescale the BE weights
(calculated according to the procedure outlined above)
with a simple factor cV n, where n is the global multi-
plicity of “direct” pions, and c and V are fit parameters.
Their values are fitted to minimize

χ2 =
∑

n

[cV nNw(n) − N0(n)]2/N0(n), (5)

where N0(n) is the number of events for the multiplicity
n without weights, and Nw(n) is the weighted number
of events. This rescaling restores the original multiplicity
distribution [24]. In addition, the single longitudinal and
transverse momentum spectra are also restored by this
rescaling [24].

Obviously, for a more detailed analysis of the final
states, single rescaling may not be enough. For instance,
since different parameters govern the average number of
jets and the average multiplicity of a single jet, both should
be rescaled separately to avoid a discrepancy with the
data. Let us stress once again that such problems arise due
to the use of generators with improperly fitted free param-
eters, and do not suggest any flaw of the weight method.
Another problem is that our formula for the weights (3)
is derived using some approximations, which are rather
difficult to control [18]. We can justify them only a pos-
teriori from the phenomenological successes of the weight
method.

Last but not least, the main practical difficulty with
(3) is the factorial increase of the number of terms in the
sum with increasing multiplicity of identical pions n. For
high energies, when n often exceeds 20, a straightforward
application of (3) is impractical [19], and some authors
[20,21] replaced it with simpler expressions, motivated by
some models. It is, however, rather difficult to estimate
their reliability.

We have recently proposed two ways of dealing with
this problem. One method consists of a truncation of the
sum (3) up to terms, for which the permutation P (i)
moves no more than five particles from their places [22].
However, it is difficult to claim a priori that such a trunca-
tion does not change the results which would be obtained
using the full series (2).

Therefore a second way of an approximate calculation
of the sum (2) was proposed [23]. Since this sum, called
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the permanent of a matrix built from weight factors wi,k,
is quite familiar in field theory, one may use a known in-
tegral representation and approximate the integral by the
saddle point method. However, this method is reliable only
if in each row (and column) of the matrix there is at least
one non-diagonal element significantly different from zero.
Thus the prescription should not be applied to the full fi-
nal states, but to the clusters, in which each momentum is
not far from at least one other momentum. The full weight
is then a product of weights calculated for the clusters, in
which the state is divided.

The considerations presented above suggested the ne-
cessity of combining these two methods. After dividing the
final state momenta of identical particles into clusters, we
used for small clusters the exact formulae presented in [15,
22]. For large clusters (with more than five particles) we
compared two approximations (truncated series and the
integral representation) to estimate their reliability and
the sensitivity of the final results to the method. Obvi-
ously, the results depend also on the clustering algorithm:
if we restrict each cluster to particles very close in mo-
mentum space, the neglected contributions to the sum (3)
from permutations exchanging pions from different clus-
ters may be non-negligible, and if the cluster definition is
very loose, the saddle point approximation may be unreli-
able. This was then also checked to optimize the algorithm
used. We found that the truncated series approximation
was sufficient in all cases we checked [24]. Our method has
already been applied to the analysis of W+W− production
[25].

3 The data and their analysis

Extremely high statistics collected in LEP for the hadronic
decays of Z0s produced in e+e− collisions allowed one to
investigate in detail many interesting effects. In particular,
the interference effects due to the Bose–Einstein statistics
for pions were analyzed in several experiments.

The notorious difficulty in measuring the Bose–
Einstein interference effects (BE effects) in multi-particle
production is the proper choice of reference sample. In
the early investigations the ratio of numbers of “like-to-
unlike” charged pion pairs was analyzed as a function of
three- or four-momentum difference squared,

RBE(Q2) =
∫

ρ++
2 (p1, p2)δ[(p1 − p2)2 + Q2]d3p1d3p2∫

ρ+−
2 (p1, p2)δ[(p1 − p2)2 + Q2]d3p1d3p2

.

(6)
Obviously, the denominator has Breit–Wigner peaks
around the values of Q2 corresponding to masses of res-
onances in the π+π−system (and other peaks due to the
maxima in mass spectra from three-pion resonances)
which are absent in the numerator. To properly estimate
the BE effects one should subtract these maxima, or to
exclude the “resonance regions” from the Q2 range used
in fitting RBE to the chosen function.

Therefore, recently a more common choice for the de-
nominator was the “uncorrelated background” formed e.g.
by choosing pairs of “like sign” pions from different events,

Table 1. Fits to the OPAL data

R(fm) λ χ2/d.o.f.

Reference fit 0.955 ± 0.012 0.672 ± 0.013 402/40

to RBE

Fit with Q bins 0.962 ± 0.013 0.667 ± 0.014 204/17

of 50 MeV

Fit to R′
BE 0.793 ± 0.015 0.577 ± 0.010 185/40

which led to the definition presented in the former sec-
tion, see (1). Here the main problem comes from neglect-
ing the energy-momentum conservation effects (present in
the numerator and absent in the denominator). However,
for high energies and a restricted range of momenta (e.g.
the “central region”, often used for the analysis) such ef-
fects are expected to be rather small.

This method is easy to apply for hadronic or heavy
ion collisions, where the initial momenta form the nat-
ural symmetry axis in the CM frame. For Z0 decays the
typical events are not aligned with the momenta of the ini-
tial e+e− pair. Thus the momenta chosen from different
events should be rotated to the same symmetry axis be-
fore calculating Q2. Unfortunately, such a procedure is not
well defined: using sphericity, thrust or other variables one
obtains different values of the rotation angles. Moreover,
the three- and many-jet events do not have a well-defined
symmetry axis, and limiting the analysis to the two-jet
events would be rather arbitrary (and dependent on the
jet definition).

Therefore, the best strategy seems to be using Monte
Carlo generators, which are rather reliable for the process
under discussion. Instead of analyzing the BE ratio RBE
one considers the “double ratio”, i.e. the ratio of Rexp

BE
given by the data and RMC

BE computed from the MC gen-
erated events,

R′
BE = Rexp

BE /RMC
BE . (7)

An analogous “double ratio” has been defined also for
the first definition of the “BE ratio” (1) [26]. The results
obtained for two double ratios are inconsistent. In the fol-
lowing we use only the definition (7), preferred recently
by the experimental groups [27,28].

The data with largest statistics have been presented by
the OPAL group both for R′

BE and for RBE. They com-
pared the parameter values from the fits (with resonance
regions excluded) to the function

f(x) = κ[1 + λ exp(−R2x2)](1 + αx2). (8)

The data (based on 3.6 million of events) were shown for
x = Q and for x = qt = ((p1t − p2t)2)1/2 [27]. We recall
here in Fig. 1 the data and fits for RBE(Q) and R′

BE(Q).
The values of λ and R differ quite significantly, as shown
in Table 1.

The other important conclusion drawn by the authors
of that work was that even the fit for the double ratio
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Fig. 1. a The BE ratio RBE (6) from the OPAL data (black
points) and from the JETSET MC without BE effect (open
points); b the double ratio R′

BE (7) from the same data. Solid
lines are fits to (8) [25]

requires cutting off the resonance regions. This is because
the standard JETSET/PYTHIA MC generator does not
satisfactorily describe the ratio RBE not only for small Q
(where the BE effect may appear), but also in the reso-
nance region.

Let us add that one may interpret this disagreement as
a signal that the production of K0

S and ρ is overestimated
in this MC: the dips in experimental RBE at Q = 0.40
and 0.72 GeV (corresponding to the K0

S and ρ masses,
respectively) are less sharp in the data than in MC, which
produces bumps in R′

BE.
In any case, the OPAL data show that one must be

careful in interpreting the shape of the BE ratio (or dou-
ble ratio) when using the unlike sign pairs as the refer-
ence sample. The fit parameters, which are tentatively
interpreted as characterizing the source incoherence and
geometrical size, depend significantly on the method of
analysis. Moreover, the imperfect description of resonance

Fig. 2. The BE double ratio R′
BE (7) from the ALEPH data.

The solid line is a fit to (8) [28]

production in MC may distort the shape of the double ra-
tio (2), making the detailed success or failure of the fits
to specific functional forms rather ambiguous.

This seems to be the case for the recently presented
ALEPH data for Z0 decay used in the analysis of W pair
decays [28]. As shown in Fig. 2, the data for R′

BE deviate
from a smooth fit in a very similar way as the OPAL data
shown in Fig. 1b (if one excludes the resonance ranges,
the fit would go through points for Q between 0.4 and
0.6 GeV leaving the points below 0.4 GeV above the curve,
and the excess around 0.7 GeV would be even more pro-
nounced). Due to smaller statistics (below 100 000 events)
much wider bins (of 0.1 GeV) were chosen.

Nevertheless, it seems that the claim of the authors of
[28] that the data show a clear preference for one of the
three models implementing the BE effect into MC requires
a more careful analysis. In fact, if one would cut off the
resonance regions (as done for OPAL data) certainly no
conclusions could be drawn. If the full range of Q is used,
one should ask before comparing models if they influence
the size and/or shape of the resonance contributions to
the BE ratios. We will later come back to these questions.

4 Weight methods; assumptions and results

Obviously, the Gaussian two-particle weight factor used
in our method is just a simple ansatz. There are no deep
reasons to expect such a shape (corresponding to a Gaus-
sian distribution of two-particle birth-place position dif-
ferences) for the weight factor. In fact, the Wigner func-
tions (which serve to define the weight factors [18]) are
not even necessarily positive. Thus, it is interesting not
just to fit the Gaussian width to the data, but to inves-
tigate generally how the shape of RBE (or R′

BE) depends
on the parameters of the two-particle weight factors for
their different functional forms. In principle the data may
allow one to find the proper factor in momentum space
and to deduce from that some information on the space-
time structure of the source. For simplicity, we restrict
ourselves here to the analysis of data presented in Sect. 3,
and thus to the discussion of functions of a single variable
Q2 (which corresponds to the assumption of a space-time
symmetric source).
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Fig. 3. The BE double ratio R′
BE (7) for an exponential weight

factor with Q0 = 0.316

Fig. 4. The parameters of the fits to (2) for the first six bins of
R′

BE from the samples of events generated with various weights
factors: step function (circles), diffuse step (triangles), Gaus-
sian (squares), double Gaussian (open points), exponent with
oscillations (black points) and exponent (crosses). The param-
eters of the fits to the data are also shown as black diamonds
(OPAL [27]), open diamonds (our fit to OPAL without Gamow
correction), open triangles (ALEPH [28]) and black triangles
(our fit to ALEPH)

We have performed MC generation of hadronically de-
caying Z0s produced in the e+e− collisions at the peak
energy with the standard PYTHIA/JETSET generator.
Each event was assigned the weight calculated according
to our method described in Sect. 2 with the two-particle
weight factor given alternatively by a Gaussian (4), an
exponent (e−Q/Q0), a step function (1 for Q ≤ Q0, 0 for
Q > Q0), a diffuse step function (2/(1 + eQ/Q0)), a dou-
ble Gauss (αe−Q2/2Q2

0 + (1 − α)e−Q2/Q2
0) or an oscillating

exponent (e−Q/Q0 sin(αQ)/αQ) with various values of pa-
rameters for each form of the weight factor. For each set
of parameters one million of events was generated.

For all samples the double ratio R′
BE was calculated for

twenty equal bins in Q in the range 0 < Q < 2 GeV. In all
cases we found for small Q the values of R′

BE significantly
to be above 1, and for Q >> Q0 to be compatible with 1.
An example (for an exponential weight factor with Q0 =
0.316) is shown in Fig. 3.

A reasonable fit to (2) for the first few bins in Q was
obtained in all the cases. We summarize all the results in
Table 2 and in a simple two-dimensional diagram (Fig. 4),
in which the fitted values of λ and R are given.

Table 2. Fits to MC results

Factor Q0[GeV] α λ R[fm] R/Reff

Step fct. 0.141 0.46 1.73 0.61

0.158 0.47 1.44 0.57

0.173 0.49 1.23 0.53

0.187 0.56 1.16 0.54

Exponent 0.2 0.20 1.10 1.10

0.244 0.24 0.73 0.90

0.283 0.31 0.66 0.94

0.316 0.33 0.57 0.90

Gauss 0.2 0.33 1.34 0.75

0.224 0.36 1.15 0.72

0.245 0.37 0.99 0.68

0.265 0.41 0.89 0.66

Diff. step 0.172 0.39 1.30 0.73

0.2 0.42 1.02 0.66

0.224 0.47 0.90 0.65

2 Gauss 0.2 0.2 0.34 1.19 0.74

0.2 0.5 0.37 1.04 0.73

Osc. exp. 0.244 8 0.21 1.53 0.69

0.316 0.25 1.43 0.65

0.448 0.28 1.23 0.55

0.632 0.32 1.12 0.49

Each symbol in the diagram corresponds to a given
form of the weight factor. Increasing values of Q0 corre-
spond always to the increasing values of λ and decreasing
values of R. The values fitted by the OPAL and ALEPH
collaborations to their data are also shown. Since these fits
are performed to more complex formulae (e.g. (8)) and in
different ranges of Q, we have checked that very similar
values result from our simple fits. We will comment later
on other LEPII experiments.

Q0 is not the best measure of the “width in momentum
space” when one compares different shapes of the weight
factor. It seems more natural to use Q, which is just the
average value of Q for a given weight factor:

Q =

∫ ∞
0 Qw2(Q)dQ∫ ∞
0 w2(Q)dQ

. (9)

If we define Reff = 1/Q as the “effective source size” we
find a close relation between the fitted values of R and
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the input values of Reff . The ratio R/Reff , quoted in the
last column of Table 2, is in the range 0.5–1 for almost all
values of Q0 and all shapes of the weight factor.

The first obvious conclusion from Fig. 4 is that the fits
to the two experimental sets of data are strongly different.
This is partly due to the Gamow correction for the effect
of electromagnetic final state interactions, which was used
by OPAL and neglected by ALEPH. Since it has recently
been argued that this correction badly overestimates the
effect [29], we have also shown an estimate for the OPAL
point without Gamow correction (obtained using the val-
ues for correction quoted in [27]). Now the two data points
are much closer, but still they differ significantly.

The values resulting from our generated samples cover
quite a wide range both in λ and R. Certainly, it is possible
to reproduce any of the experimental values by a suitable
choice of the form and free parameters of our weight fac-
tors. However, we do not think this would give a valuable
information on the “proper” choice of the weight factor
reflecting the “real” space-time structure of the source.

There are a few reasons for such scepticism. First, as
noted in the previous section, the shape of the “experimen-
tal” R′

BE strongly depends on the quality of the “reference
MC”. Since we know that already at Q ∼= 0.40 GeV the
influence of the (poorly described) K0

S , η and η′ contri-
butions distorts the shape, the fitted values of R around
1 fm ∼= 0.2 GeV−1 are not very reliable. The situation is
even less clear if one fits a wider range of Q using a more
elaborate ansatz for R′

BE (e.g. (8)). Here the choice of the
“cut out resonance region” may quite significantly influ-
ence the fit results. Moreover, the method of implement-
ing the BE effect may influence the resonance contribu-
tion. For our method the absence of peaks or bumps in
the double ratio for the “MC with weights” over the “MC
without weights” (as seen, e.g., in Fig. 3) suggests that
this is not the case (the oscillations shown in Fig. 2 of
[28] may result from lower statistics). This should also be
checked for any other method.

Second, the choice of “direct” pions affected by the
BE effects described in Sect. 2 (although the same in our
method and in the momentum shift method of [10–12]) is
by no means unique. In fact, even for the fastest decay-
ing resonances the effective “source radius” for the decay
products should not be exactly the same as for the “real
direct pions”. Thus the choice of a single value of Q0 in
our weight factor is certainly an oversimplification. The
total exclusion of the decay products of long-living res-
onances is also an approximation: some of them may be
born quite close to the collision point and contribute to
the visible BE effect. The selection and treatment of “di-
rect” pions included in calculating weights (or subject to
the momentum shift in the method of [10–12]) strongly
influences the resulting value of λ.

Third, the standard fitting method of BE ratios or dou-
ble ratios is also a subject of criticism [30]. More plausible
methods suggest larger uncertainties of the fit parameters.

The situation would not improve if we add the other
published data, which used much lower statistics [31] or a
different form for the fitted function [32]. One may in short

summarize the situation by stating that it is too early to
deduce details of the source space-time structure from the
existing data, even if we assume the applicability of all the
assumptions used in formulating the weight method.

Another interesting feature is the relative stability of
our results with respect to the detailed shape of the two-
particle weight factor. The fitted values of λ fall in the
range of values 0.2–0.5 for all the functions considered.
They are highest for the step function, lower for “diffuse
step function”, still lower for a Gaussian and lowest for the
exponent. One may summarize that for the same “half
width” of the weight factor function one gets a higher
value of λ if the function stays longer near the value of 1
at small Q. As already noted, λ depends much stronger
on the percentage of pions counted as “direct”. The values
of λ below 1 mainly reflect the percentage of direct like-
sign pion pairs, which was already observed when using
Sjöstrand’s method of BE effect implementation [32].

A new result is the observed relative insensitivity of
the results on the oscillations in the two-particle weight
factor. In fact, the oscillation quarter-period π/(2α) ≈
0.2 GeV serves as an effective range of correlations when
it is smaller than Q0. Therefore, Reff is almost the same
for all the values of Q0 quoted in Table 2. The non-positive
oscillating values of weight factor for larger Q do not result
in values of R′

BE oscillating around 1, as one could naively
expect; averaging over many pairs in each event and over
many events kills any trace of the oscillations. This is quite
important, as many simple forms for the weight factor in
space-time (e.g. the step function) result in an oscillating
form in momentum space.

On the other hand, there is an obvious dependence
of the fitted values of R on the parameter Q0 (or Reff),
which determine how fast the weight factor decreases with
increasing Q. R/Reff has quite similar values for various
shapes of the weight factors and various values of Q0. Thus
in our method R reflects in some sense the “source size”,
as expected. As already noted, this is true also for the os-
cillations in momentum space. Increasing Q0 one increases
also the fitted values of λ, but this effect is weaker.

5 Conclusions and outlook

We have analyzed the data on the BE effect in multi-
hadron states obtained from Z0 decays within the frame-
work of the weight method of implementing this effect.
We show that the resonance contributions are not satis-
factorily described by the standard MC generators, which
makes the analysis of “double ratio” data quite difficult. In
particular, the choice of the “proper” two-particle weight
factor which would describe the data best is obviously
dependent on the way the data are processed. Thus one
should improve (if possible) the quality of the MC gener-
ators before drawing any serious conclusion on the agree-
ment or disagreement between the models and data on the
BE effect. The alternative is to elaborate better methods
of preparing the “reference sample” using only the like-
sign pairs, which are much less affected by the resonance
effects.
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On the other hand, we found that the analysis makes
no great difference between the positively defined and os-
cillating weight factors in momentum space, provided they
correspond to a similar “half-width”. This means that the
results are not too strongly dependent on the “sharpness
of the source boundary” in space-time; one may hope to
recover the proper “source size” in our method.

Let us stress that the analysis presented in this paper
is just the first step: We do not discuss the anisotropy
of the source nor the time dependence reflected in the
BE effect. Also, we do not consider here the possibilities
of comparing the effect for the selected classes of events
(defined i.e. by multiplicity, by the event shape parameters
or by some special triggers). In our opinion, the weight
method is well suited to discuss these subjects and we
hope to consider them in the near future.
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9. J. Häkkinen, M. Ringnèr, Eur. Phys. J. C 5, 275 (1998)
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